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SURFACE DISTURBANCES PRODUCED BY LOW-LEVEL, B-1 SUBSONIC AIRCRAFT

I. Introduction

There is a growing requirement to explore new technologies to detect and
track srmall cross section, low altitude, subsonic aircraft. To meet this need
we mreasure and describe infrasonic and seismic disturbances generated by low
altitude, subsonic B-1 flights over the Arkansas River Valley at the Hackarore
Ranch, just east of La Junta, Colorado, Figure 1. The work is viewed as a
preliminary step towards defining nodal elements of a system that automatically
detects and tracks low altitude flights over a passive network of seismic and
infrasonic sensors. The study also explores roles that seismic observations

might play to extend tracking performance of distributed acoustic networks.

For the past decade, the Department of Defense has supported the advance-
ment of distributed sensor network technology and its application to the
detection and tracking of subsonic aircraft [1]. The early work focused on the
pointing ability of srall acoustic arrays in a wind noise environwent. No
comparable study has been undertaken to consider the performance of seismic
network elements operating at substantially lower data rates that use very
different pointing schemes. Abundant material is on hand to document the level
of aircraft acoustics [2] and pressure effects produced by supersonic flights
[3). Also, it is well established that infrasonics generated by supersonic
flights can produce intense seismics far from the flight path. Indeed,
widespread "mystery boows” encountered after the introduction of transatlantic
Concorde flights excited such a public outcry that a presidential inquiry was

undertaken to explain them [4]. Flight operations were subsequently altered to
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ruffle Concorde ground tremors in the Northeastern US. In contrast to super-
sonic operations, documentation treating infrasonics and seismics generated by
subsonic flights is scattered and fragmwentary. Seismic phase and amplitude

data needed to differentiate between source azimuth and selsric wave direction

are virtually nonexistent for atmospheric emitters.

Surface seismics generated by infrasonic loads are extremely sensitive to
ground structure [5, 6, 7]. Further, it's well recognized that the ground
responds quite differently to slowly moving wind generared pressure
fluctuations and fluctuations of the same frequency and strength produced by an
infrasonic load [8]. Ground admittance, the ratio of the ground wotion to the
applied load, can exceed 200 mm/sec/psi in ground structures that support
“air-coupled” surface waves [9]. Conspicuous ground tremors (10 milli-
ricrons/sec) can be excited by relatively weak infrasonic "signals” (25 db)

buried in wind "noise”. Furthermore, the ground particle motion excited by an

infrasonic load contains azimuth information for network tracking without array

processing [61].

The immediate aim of this study is to establish the signal and noise
properties of infrasonic and seismic measurements generated by B-1 aircraft for
one site over a range of wind conditlons. Seismics produced by flights at other
places can then be inferred by convolving the infrasonic signals obtained here
with adrittance operators proper to those sites [10]. The potential range and
network density to detect aircraft can then be Inferred from the relative
strength of synthetic selsric signals against the local background noise.

“ignal-to-noise estimates such as these are basic to setting the spacing and

information rate nceded to detect and track atrcraft. Tracking by low
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;?' frequency, single point seismics can anticipate wuch lower data rates than
§~; srall acoustic arrays. Unlike acoustics, seismic tracking will require a large
Fw' initial calibration effort to cope with site specific admittances and pointing
t'(‘.c -
;,:Q distortions caused by ground structure. A generic high performance seismic
AL
Yy design is unlikely.
)
; ,,:.
o .
K I1. Findings i
2R
)' ~\‘
) The intensity of a seismic disturbance generated by a B-1 flight over an
oy
1 {: open, smooth (reverberation free) area is determined by the site's normal
"
[, W
&;? acoustic adrittance (a time invariant, linear operator) and an infrasonic
‘;g pressure established by the flight and aircraft parameters. Spatially coherent
P
o
L;\ infrasonic "signals” produced by flights are superimposed on an incoherent
WA
:4' pressure field whose strength depends on wind speed [1,11].
oot
r j
$ 3 The seiswic background "noise” at the Hackamore Ranch site is largely
>,
o
»f': insensitive to wind generated surface pressure. The overall “"apparent”
A5y adrittance at infrasonic frequencies, computed from the ratio of the total
(. \"
':‘: seismics to total pressure during periods free of infrasonic signals is
)
A
4
'] sorething less than 1.0 mw/sec/psi. The same admittance computation for
®
Y- infrasonic loads is larger by about two orders of wagnitude. Seiswmic reception
F\ Ll
Ot
:&i at the Hackamore Ranch only weakly depends on wind level. Infrasonic or
[ ').:
» acoustic detection and tracking at this site at the same signal-to-noise level
f; calls for processing a number of sensors to suppress in-band, wind generated J
~
:: pressure fluctuations. ‘
N
N
R,
“
N Low altitude B-! aircraft approaching the Hackamore Ranch at Mach 0.85
<
L
-
Caiy) 3
d':-
® |
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from the north produce broadband infrasonic signals with a spectral maximur at
3.0 Hz. Infrasonics impinging on the ground in turn excite narrowband ground
disturbances that peak around 15 Hz. Seiswics produced by low level flights
passing east or west of the site are conspicuous events lasting for as much as a
rinutc even under wind conditions that largely mask infrasonic disturbances. In
one minute the B-1 travels about 20 km. A 15 km station spacing should permit

tracking by two or more seisric nodes most of the time.

Adrittance maxima excited by B-1 flights over the Hackamore Ranch range
fror 50 to 150 mm/sec/psi, depending on the propagation path defined by sensor
and ailrcraft locations. Admittances found here are much more path sensitive
than values at "well behaved”, well sorted, flat layered sites that support
boundary waves with a phase velocity around the speed of sound in air. The
ability to demonstrate the use of seismics to detect and track aircraft by
particle orbits, for example, can be considerably eased by seeking out wind
resistant, low noise, uniformly responsive sites with a large admittance maximum
below 10 Hz, either around La Junta or in an entirely new area. One such area
is the Kennedy Space Center (KSC), Florida. Admittances there exceed 250
rr/sec/psi at 3.0 Hz [9]. Seismics excited by B-1 flights at KSC should be
fifty times stronger (34 db) than seiswics at the Hackamore Ranch, partly
because of heightened ground sensitivity and partly because the frequency of the
peak admittance at KSC better matches the peak B-1 pressure signal. Well
behaved, low frequency, high adrittance, wind resistant areas can also be found
near Edwards AFB, California [6]. Playa sites at Edwards AFB are particularly
interesting in the long run because they are regularly exposed to infrasonics

from a large mix of well located, modern aircraft,
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f': III. The Measurerent System

N

Efﬁ The AFGL Geophysical Data Analysis System (GDAS) is a multi-channel,

N |

5} portable, aigital system that acquires, stores, retrieves, analyzes and displays
:Jm _ infrasonic and seiswic wmeasurements., As used here, GDAS sampled the output of a
J\% crossed linear array consisting of eight pairs of surface seismometer and

:E¢ "microphone” combinations as shown in Figure 2. Redundant measurements at the
:ﬁ: intersection of the two sensor lines are used to separate coherent signals from

N incoherent noise arising from turbulence and hardware sources. Simple sumring

N
|§§ of coherent signals embedded in a spatially incoherent "pressure noise” field
:$; enhances measurement quality by a factor directly proportional to the square
';: root of the number of closely clustered measurement points [9].

.~ :
= |
E’: GDAS measurement characteristics are determined with the sensors in place
ﬁf} before and after the B-1 overflights. Figure 3 and Figure 4 depict nominal
sg responses of the seismic and pressure channels. Hardware noise, obtained by
i; cross~correlating nearly colocated seiswometer outputs, is found to be a minor
;:& contributor. RMS noise for B-1 seismics around the peak ground response is
‘Eg estimated to be about 3% when computed from the square root of the ratio of

:H coherent and incoherent spectra between “"colocated” seismometers, see Figure 5.
o
:EZ Hardware gains for seismic channels are set by peak seismics expected from

~
';? . low level, subsonic, SAC training sorties that pass north to south over the
.;: Hackamore Ranch, a couple of kilometers east or west of the measurement site.
}3 In contrast, the modest gain of the pressure channels is governed by the need to
vfj contain large wind driven pressure excursions in the linear range of the GDAS

arplifiers and filters. Lastly, the system bandpass was chosen to clearly

o SRR
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bracket peak pressure and ground rotion frequencies produced by B-1 over-

flights.

IV. Ground Response to Point Loads

The seiswic response of the Hackamore site to a surface load was first
sought by measuring wavelets produced by an impulsive, concentrated, normal,
surface force (harrer blow). For flat, well sorted, alluvial areas whose
structure depends exclusively on depth, such impacts richly excite low rode
boundary waves with a vertical particle motion that depends solely on source-
observer offset [13]. The typical seismic disturbance for alluvial sites is
strongly dispersed, with low frequencles attenuated least and arriving first
[14]). When seismic surface wave velocity equals that of the air term, ground

response can be intense, well in excess of 200 mm/sec/psi.

Figure 6 is the observed vertical motion produced by a hamrmer blow for one
nffset distance at four cardinal headings fror a common point at the Hackamore
Ranch. Ground response to a surface irpact is narrow banded and path sensitive,
Figure 7. Also, seisric group delay is substantially larger than that of the
air path. Wavelet ronuniforwmities shown here arise fror the distribution in low
velocity sedirents lying irmediately under the array. The site does not uni-
forrlv support boundarv waves around the speed of sound in air. However, the
long duration an1 rnarrow frequer . .tent of the wavelets does show that the

area strongly reverhorates unfder the o jon of a surface load.

Response of thils site to hamrer blows and aircraft infrasonics is sensitive

to seeringly "smali’ changes in observer location (5 meters) as well as source




position. Looking ahead, the area's response to B-1 infrasonics is also
featured by position sensitive reverberations that are a raximur in an area

included by stations 4 and 7, see Table 4.

Frequency and spectral width of the waximur response at the array center
obtained fror impacts at the 4 cardinal headings is summarized in Table 1. The
frequency of peak response, spectral width and magnitude are all azimuth
sensitive. The site has sore potential to be calibrated to generate aziruth
estirates based on its relative spatial respomse. It is widely recognized that
lateral inhomogeneities affect surface waves. Railroad Valley near Ely, Nevada,
for exarple, has an azimuth dependant dispersion that should allow azimuth
estirates to low altitude, subsonic aircraft based solely on the frequency of

air-coupled waves [14].

Table 1. Hammer Wavelet Sensitivity with Source Azimuth

Aziruth Peak response Width (half power points)
North 19.5 Hz 5.0 Hz
South 26.0 Hz 5.5 Hz
East* 18,5 Hz 3.0 Hz
West 21.5 Hz 5.0 Hz

7

V. Surface Noise Measurements at the Hackamore Ranch

. l' l'l' 2 W
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Farlier measurements of surface seismics and pressures at the Hackamore

jﬁ Ranch show the arbient background at a point can be represented by a weighted,
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zero mean, stationary Gaussian process. For times free of B-1 generated
signals, the environment is well described statistically by spectra. Further,
background measurements between seismics and pressure at a “common” point, and
pressure measurements between closely spaced points are uncorrelated [12].
Vertical component long term spectral estimates in the band 1.0 to 20.0 Hz lie -
between 5.0 E~12 and 2.0 E~10 (mm/sec)z/Hz with a minimur value located some-
what above 10,0 Hz. In turn, long term “signal free” pressure spectra taken by
sensors buried just below the surface decrease as the square of the frequency
with a value of 3.0 E-09 at 1.0 Hz to 3.0 E-]l (psi)z/H7 at 10.0 Hz. This
spectral shape is a common characteristic of wind excited pressure measure-—

rents; the roll-off extends uniformly over several decades of frequency [11].

Long~term average power in Table 2 is given by octaves for pressure and
seisric measurements along with an "effective” adomittance value that is the
ratio of the total in-band seismics to pressure. For times free of infrasonic
disturbances, overall "effective"” adrittances (ratio of the strength of the
ground motion to surface load due soley to wind in the band from 1 to 20 Hz) are
less than | mm/sec/psi. Like admittances based on above ground pressure

medsurerents are somewhat smaller.,

Band ! Band 2 Band 3 Units
2.5 to 5 5.0 to 10 10 to 20 Hz. *
Seismic 3.6144 E-10 3.2102 E-10 9.7988 E-10 (mm/sec)2 .
2
Pressure 1.7145 E-09 8.9359 E-10 4.0462 E-10 (psi)”
Admittance 0.459 0.599 1.556 rm/sec/psi
8
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VI. B-1 Generated Pressures and Seismics

Flights by the sare type aircraft operating under the same flight rules
are expected to generate the same surface pressure “footprint” when overflying
open, srooth topography. In contrast, seismics are controlled by the local

ground structure as well as the flight "footprint”.

Figures 8 through 1l are spectral estimates obtained from periodograr
averaged data segments just before, during and following four B-1 overflights.
For times before an obvious B-1 pressure signal, seismics between 10 to 20 Hz
are significantly stronger than the long-terr seismic background noise value.
Samples taken shortly before and after flights produce readily identified
narrowband seismics driven by inconspicuous infrasonics. The analysis given
here focuses on four overflights, see Appendix A. The overflights were
selected from a set of 24 to show wind effects on measurements for sorties

passing east and west of the measurement site.

Figures 12a through 12f give coherence estimates between “colocated”
pressure and seismic reasurements for calm and windy conditions shortly before,
during and after B-1 overflights. It is readily seen that infrasonics are

highly correlated with seiswic reasurements; wind generated pressures are not.

Looking ahead to detection, high correlation between pressure and seismic
measurements 15 a reliable indicator of infrasonic "signals”. The linear
relation between infrasonics and seismics [15] also allows a separation between

wind Induced pressure fluctuations and aircraft generated infrasonics. Figure

8b and Figure 8c are the total pressure spectra before and during a calm wind
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condition for a B-] passing east of the measurement site. Total pressure spectra

L 4

for the period of closest passage is further separated into an incoherent wind
pressure and a coherent infrasonic spectral term through its correlation with
seisric measurements. The incoherent residual, Figure 13, corresponds quite well
in shepe and level to the "wind” spectra just prior to the B-1l's arrival. In
turn, the coherent terr in Figure 14 isolates B-1 infrasonics with a peak value
of 4.0 E-09 (psi)z/Hz (86 db) at 3.0 Hz. The signal drops to 74 db at the
beginning of the audible range (20 Hz), Separation between wind noise and B-1
infrasonics is nearly complete because seismics at the tire of nearest passage
are as much as 4 orders of magnitude greater than the seiswmic "noise” term in
the 1 to 30 Hz band. Correlation between infrasonic pressure and seismics can
be extended to avoid detection errors (false disrissal in the case of a high

wind threshold and false alarm because of a purely seismic event).

Table 3 summarizes estimates of total pressure, incoherent "wind"” pressure,

*"

coherent "infrasonic” pressure and seismics for an octave band around the peak
ground response shortly before and during east track flyovers for calm and windy
conditions. The relative strength of B~] seiswmic and pressure "signals” measured
by the jump in spectra before and during flyovers is noteworti.y. The high

signal-to-noise gain produced by the ground acting as a spatlal velocity filter

invariably penalizes bandwidth {6].
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Table 3. Properties of the 10 to 20 Hz Passband

Measurement Windy Calmw Units
Seiswmic 2
Before 8.309 E-09 1.694 E-08 (mw/sec)
During 7.376 E-06 1.146 E-05 (mm/sec)
’ Seismic Power Ratio 887.7 676.5 (during/before)
Pressure (psi)2
Infrasonic
Before .158 E-09 .040 E-09 "
During 3.496 " 3.379 " “
Wind
Before 1.015 * .199 " "
During 1.031 © L4220 "
Total
Before 1.173  ~ .239 ¢ "’
During 4,527 " 3.801 *~ "
Pressure Power Ratio 3.86 15.88 (during/before)
Admittance Overall
Effective 40.36 54,91 mr/sec/psi
Infrasonic 45,93 58.23 mm/sec/psi

VII. Spatial Relations

Seismics excited during a B-1 flight are highly coherent between station
pairs for frequencies less than the maximum ground response, Figure 15. An
abrupt coherency loss appears just above the peak response even in the short-term
with the aircraft at nearly the same azimuth. For times free of B-1 disturb-
ances, or around the time of closest passage, seismics between station pairs
becore uncorrelated over time in the fashion of a seisric field produced by
sources over a range of directions, ie, with a gradual coherency loss with

increasing frequency that is directly proportional to observer separation.
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Pressure noise spectra obtained from periodograms averaged over time or
spatially are equivalent. Wind generated surface spectra exhibit the classic
inverse relation with frequency and overall level proportional to wind speed.
Infrasonic signal strength is uniform over the Hackamore array. Coherence
between pressures measured by surface sensors placed less than a meter apart is

seall for wind and high for infrasonics, Figure 16.

B-1 generated pressures propagate across the array coherently with an
amplitude and phase in harrony with a pressure wave frow a swall, distanE, woving
source impinging on a swooth surface. In turn, ground motion has only a well
structured, repeatable, position dependent pattern for frequencies less than, or
equal to the main response. Seiswic phasing between points above the "funda-

mental” response is erratic, even for short intervals with the B-1 at

essentially the same azimuth.

Ground Response at the Hackamore Site

Ground admittance, computed from the square root of the ratio of the total
seismic spectra to that portion of the pressure spectra that is coherent with
the seismics, is given in Figure 17 for the array center. Admittance is
sensitive to small changes in observer location. Table 4 is a compilation of
admittance estirmates for seven locations around the time of peak loading for a

B-] passing east of the array. Infrascnics dominate the Table 4 pressure

measurements above 2.0 Hz. Admittances at positions 4 and 7 are significantly

larger than values found elsewhere. The array center has a value midway

between the extremes. The position sensitive characteristic of admittances

seen in Table 4 18 quite repeatable for all the east track sorties,

12

" “m IR e R Y
v
NGOG A,

-

T Te N T "
.“.- \ f'l-‘- Y

b I R
el

")




N Sorties passing to the west produce a somewhat different pattern with a

% slightly larger admittance at the center.

V) Table 4. Admittance Maxima and Center Frequency

S Position Admittance Center Frequency

N - -
56.062 rm/sec/psi 19.0 Hz

91.038 " 15.0 " (center)

88.192 b 14.0 "

141,421 " 13.0 "

62.377 " 23.0 "

91.038 " 15.0 " (center)

141,421 " 13,0 "

58.326 " 13.0 *
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